The Spread of the Shape Operator as Conformal Invariant

نویسندگان

  • BOGDAN D. SUCEAVĂ
  • Bogdan D. Suceavă
چکیده

The notion the spread of a matrix was first introduced fifty years ago in algebra. In this article, we define the spread of the shape operator by applying the same idea to submanifolds of Riemannian manifolds. We prove that the spread of shape operator is a conformal invariant for any submanifold in a Riemannian manifold. Then, we prove that, for a compact submanifold of a Riemannian manifold, the spread of the shape operator is bounded above by a geometric quantity proportional to the Willmore-Chen functional. For a complete non-compact submanifold, we establish a relationship between the spread of the shape operator and the Willmore-Chen functional. In the last section, we obtain a necessary and sufficient condition for a surface of rotation to have finite integral of the spread of the shape operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

نظریه میدان اسکالر کلاسیک با تقارن همدیس و پتانسیل نامثبت

We review the conformal symmetry group and investigate the isomorphism between the conformal group and O( D,2 ) . We study the classically  conformal invariant  scalar theory in D -dimensions with a non-positive potential . We solve the  equations  of motion  by  assigning O(D-1, 2)symmetry to the classical solutions with broken translational symmetry in all directions. Then we consider a six d...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

Analytic extension of a $N$th roots of $M$-hyponormal operator

In this paper‎, ‎we study some properties of analytic extension of a $n$th roots of $M$-hyponormal operator‎. ‎We show that every analytic extension of a $n$th roots of $M$-hyponormal operator is subscalar of order $2k+2n$‎. ‎As a consequence‎, ‎we get that if the spectrum of such operator $T$ has a nonempty interior in $mathbb{C}$‎, ‎then $T$ has a nontrivial invariant subspace‎. ‎Finally‎, ‎w...

متن کامل

Optimization of Conformal Mapping Functions used in Developing Closed-Form Solutions for Underground Structures with Conventional cross Sections

Elastic solutions applicable to single underground openings usually suffer from geometry related simplification. Most tunnel shapes possess two axes of symmetry while a wide range of geometries used in tunneling practice involve only one symmetry axis. D-shape or horse-shoe shape tunnels and others with arched roof and floor are examples of the later category (one symmetry axis). In the present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003